Chapter 5 Problem II (+1)

Name

7. How many protons and electrons are in each atom?

Element	Protons	Electrons		
Fluorine				
Aluminum				
Calcium				

8. Complete the table:

Element	Atomic #	Protons	Electrons
K	19		19
			5
	16		
		23	

9. How many neutrons are in each atom?

- a) ¹⁶₈ O c) ¹⁰⁸₄₇ Ag
- d) ⁸⁰₃₅ Br b) ³²₁₆ S

С

10. Express the composition of each atom in shorthand form.

- a) Carbon-12
- c) Fluorine-19
- d) Beryllium-9
- 11. For each atom in Problem 9, identify the number of electrons. d)

b) a) C)

- 13. The three isotopes of chromium are chromium-50, chromium-52, and chromium-53. How many neutrons are in each isotope, given that chromium always has an atomic number of 24?
 - Chromium-50 has _____ neutrons. Chromium-52 has _____ neutrons. Chromium-53 has _____ neutrons.
- 14. Boron has two isotopes: B-10 and B-11. Which is more abundant, given that the atomic mass of boron is 10.80?
- 16. The element copper has naturally occurring isotopes with mass number of 63 and 65. The relative abundance and atomic masses are 69.2% for mass = 62.93 amu, and 30.8% for mass 64.93 amu. Calculate the average atomic mass of copper.

- 17. Calculate the atomic mass of bromine. The two isotopes of bromine have atomic masses and relative abundance of 78.92 amu (50.69%) and 80.92 amu (49.31%).
- 18. Explain how the atomic number of an element identifies the element.
- 19. How can atomic number and mass number be used to find the numbers of protons, electrons, and neutrons?
- 20. An atom is identified as platinum-195.
 - a) What does the number represent?
 - b) Symbolize this atom using superscripts and subscripts.
- 21. How are isotopes of the same element alike? How are they different?

Element	Protons	Neutrons	Electrons		
⁶ ₃ Li					
⁷ ₃ Li					
⁴² 20 Ca					
⁴⁴ ₂₀ Ca					
⁷⁸ ₃₄ Se					
⁸⁰ 34 Se					

23. List the number of protons, neutrons, and electrons in each pair of isotopes.

- 24. The atomic masses of elements are generally not whole numbers. Explain why.
- 25. How is the atomic mass of an element calculated from isotope data?
- 26. Using the data for nitrogen listed in Table 5.3, calculate the average atomic mass of nitrogen.