\qquad

1. During an Apollo moon landing, reflecting panels were placed on the moon. This allowed earth-based astronomers to shoot laser beams at the moon's surface to determine its distance. The reflected laser beam was observed 2.52 s after the laser pulse was sent. If the speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, what was the distance between the astronomers and the moon?
2. A tortoise and a hare are in a road race to defend the honor of their breed. The tortoise crawls the entire 1000 m distance at a speed of $0.2000 \mathrm{~m} / \mathrm{s}$ while the rabbit runs the first 200.0 m at $2.000 \mathrm{~m} / \mathrm{s}$. The rabbit then stops to take a nap for 1.300 h and awakens to finish the last 800.0 m with an average speed of $3.000 \mathrm{~m} / \mathrm{s}$. a) Who wins the race and by how much time? b) Draw a graph of distance vs. time for the situation.
3. Two physics professors challenge each other to a 100 m race across the football field. The loser will grade the winner's physics labs for one month. Dr. Nelson runs the race in 10.40 s . Dr. Bray runs the first 25.0 m with an average speed of $10.0 \mathrm{~m} / \mathrm{s}$, the next 50.0 m with an average speed of $9.50 \mathrm{~m} / \mathrm{s}$, and the last 25.0 m with an average speed of $11.1 \mathrm{~m} / \mathrm{s}$. Who gets stuck grading physics labs for the next month?
4. In the Wizard of Oz, Dorothy awakens in Munchkinland where her house has been blown by a tornado. If the house fell from a height of 3000 m , with what speed did it hit the Wicked Witch on the East when it landed?
5. Chief Boolie, the jungle dweller, is out hunting for dinner when a coconut falls from a tree and lands on his toe. If the nut fell for 1.4 s , how fast was it traveling when it hit Chief Boolie's toe?
6. At Great Adventure Amusement Park in New Jersey, a popular ride known as "Free Fall" carries passengers up to a height of 33.5 m and drops them to the ground inside a small cage. How fast are the passengers going at the bottom of this exhilarating journey?
7. A car accelerates uniformly from rest to a speed of $65 \mathrm{~km} / \mathrm{h}(18 \mathrm{~m} / \mathrm{s})$ in 12 s . Find the distance the car travels during this time.
8. A car traveling at $+7.0 \mathrm{~m} / \mathrm{s}$ accelerates at the rate of $+0.80 \mathrm{~m} / \mathrm{s}^{2}$ for an interval of 2.0 s. Find final velocity.
9. Perhaps sometime in the future, NASA will develop a program to land a human being on Mars. If you were the first Mars explorer and discovered that when you dropped a hammer it took 0.68 s to fall 0.90 m to the ground, what would you calculate for the gravitational acceleration on Mars?
