\qquad

1. A car accelerates uniformly from rest to a speed of $23.7 \mathrm{~km} / \mathrm{h}$ in 6.5 s . Find the distance the car travels during this time.
2. When Maggie applies the brakes of her car, the car slows uniformly from $15.00 \mathrm{~m} / \mathrm{s}$ to $0.00 \mathrm{~m} / \mathrm{s}$ in 2.50 s . How many meters before a stop sign must she apply her brakes in order to stop at the sign?
3. A jet plane lands with a velocity of $+100 \mathrm{~m} / \mathrm{s}$ and can accelerate at a maximum rate of $-5.0 \mathrm{~m} / \mathrm{s}^{2}$ as it comes to rest. Can this plane land at an airport where the runway is 0.80 km long?
4. A car with an initial speed of $23.7 \mathrm{~km} / \mathrm{h}$ accelerates at a uniform rate of $0.92 \mathrm{~m} / \mathrm{s}^{2}$ for 3.6 s . Find the final speed and the displacement of the car during this time.
5. An automobile with an initial speed of $4.30 \mathrm{~m} / \mathrm{s}$ accelerates at the rate of $3.00 \mathrm{~m} / \mathrm{s}^{2}$. Find the final speed and the displacement after 5.0 s .
6. A car starts from rest and travels for 5.0 s with a uniform acceleration of $-1.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the final velocity of the car? How far does the car travel in this time interval?
7. A car traveling initially at $+7.0 \mathrm{~m} / \mathrm{s}$ accelerates at the rate of $+0.80 \mathrm{~m} / \mathrm{s}^{2}$ for a distance of 245 m . a) What is its velocity at the end of the acceleration? b) What is its velocity after its accelerates for 125 m ? c) What is its velocity after it accelerates for 67 m?
8. A gull soaring in a straight line with an initial velocity of $-32 \mathrm{~m} / \mathrm{s}$ accelerates at a rate of $+3.0 \mathrm{~m} / \mathrm{s}^{2}$ for 9.0 s . What is the gull's velocity at the end of the acceleration?
9. An aircraft has a liftoff speed of $120 \mathrm{~km} / \mathrm{h}$. a) What minimum constant acceleration does this require if the aircraft is to be airborne after a take-off run of 240 m ? b) How long does it take the aircraft to become airborne?
10. A car accelerates in a straight line from rest at the rate of $2.3 \mathrm{~m} / \mathrm{s}^{2}$. a) What is the speed of the car after it has traveled 55 m ? b) How long does it take the car to travel 55 m ?

Examples:

1. A racing car reaches a speed of $42 \mathrm{~m} / \mathrm{s}$. It then begins a uniform negative acceleration, using its parachute and braking system, and comes to rest 5.5 s later. Find how far the car moves while stopping.
2. A plane starting at rest at one end of a runway undergoes a constant acceleration of $4.8 \mathrm{~m} / \mathrm{s}^{2}$ for 15 s before takeoff. What is its speed at takeoff? How long must the runway be for the plane to be able to take off?
3. A baby sitter pushing a stroller starts from rest and accelerates at a rate of 0.500 $\mathrm{m} / \mathrm{s}^{2}$. What is the velocity of the stroller after it has traveled 4.75 m ?
